Distracted from Comparison: Product Design and Advertisement with Limited Attention

Johannes Johnen ${ }^{1}$ Benson Tsz Kin Leung ${ }^{2}$
12th Sept 2023
Junior Theory Workshop
${ }^{1}$ CORE/LIDAM, UCLouvain
${ }^{2}$ Hong Kong Baptist University

Motivation

- People ignore readily-available info, suggesting limited attention.
- Malmendier \& Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...

Motivation

- People ignore readily-available info, suggesting limited attention.
- Malmendier \& Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...
- Context: complex products.

Motivation

- People ignore readily-available info, suggesting limited attention.
- Malmendier \& Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...
- Context: complex products.
- Go deeper in or expand the consideration set.
- Study match values or browse prices.

Motivation

- People ignore readily-available info, suggesting limited attention.
- Malmendier \& Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...
- Context: complex products.
- Go deeper in or expand the consideration set.
- Study match values or browse prices.
- Design influences what consumers pay attention to.
- Food labels: Dubois et al (2021), Crosetto et al. (2020).
- Ad bans: Dubois et al. (2018).

Motivation (cont'd)

- How do firms use designs to refocus consumers' limited attention?

Motivation (cont'd)

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...

Motivation (cont'd)

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
- ...product design focused on niche consumers.

Motivation (cont'd)

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
- ...product design focused on niche consumers.
- ...taste-based features more salient than quality.

Motivation (cont'd)

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
- ...product design focused on niche consumers.
- ...taste-based features more salient than quality.
- ...more precise info about match values.

Motivation (cont'd)

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
- ...product design focused on niche consumers.
- ...taste-based features more salient than quality.
- ...more precise info about match values.
- Limited attention (Heidhues et al. (2021)): tradeoff between depths and breadth of search.

Results

Distraction effect:

Results

Distraction effect:

- Firms combine large prices with more-precise info

Results

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values

Results

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping

Results

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping \Rightarrow less competition.

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping \Rightarrow less competition.
- Mixed strategy: high price - more info \& low price - less info.

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping \Rightarrow less competition.
- Mixed strategy: high price - more info \& low price - less info.

Informational Interventions:

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping \Rightarrow less competition.
- Mixed strategy: high price - more info \& low price - less info.

Informational Interventions:

- More-detailed info relax competition.
- E.g. exposure to sales force, classic nutrient tables.

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping \Rightarrow less competition.
- Mixed strategy: high price - more info \& low price - less info.

Informational Interventions:

- More-detailed info relax competition.
- E.g. exposure to sales force, classic nutrient tables.
- ...can even harm consumers.

Results

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping \Rightarrow less competition.
- Mixed strategy: high price - more info \& low price - less info.

Informational Interventions:

- More-detailed info relax competition.
- E.g. exposure to sales force, classic nutrient tables.
- ...can even harm consumers.
- To distract consumers, firms obfuscate info.

Results

Distraction effect:

- Firms combine large prices with more-precise info \Rightarrow consumers focus on match values \Rightarrow less comparison shopping \Rightarrow less competition.
- Mixed strategy: high price - more info \& low price - less info.

Informational Interventions:

- More-detailed info relax competition.
- E.g. exposure to sales force, classic nutrient tables.
- ...can even harm consumers.
- To distract consumers, firms obfuscate info.
- Coarser and easily-available info reinforce comparison shopping and benefit consumers. (e.g. nutriscores, ad bans)

Related Literature

- Consumer search and limited attention
- Wolinsky(1986), Anderson and Renault(1999), Bar-Isaac et al.(2012),...
- Anderson and De Palma(2012), Bordalo et al.(2016), Hefti and Liu(2020), Heidhues et al. (2021) ...
- Spiegler and Eliaz (2011a,b).
- Here: design impacts what consumers pay attention to.
- Product design
- Johnson and Myatt(2006), Bar-Isaac et al.(2012),...
- Here: designs direct consumer attention.
- Obfuscation
- Carlin(2009), Chioveanu and Zhou(2013), Gu and Wenzel(2014), Piccione and Spiegler(2012)...
- Here: consumer attention endogenous.
- Information overload
- Anderson and De Palma(2012), Hefti and Liu(2020),...
- Here: individual firms deliberately overload consumers.

The Model

Firms and Consumers

Mass 1 of consumers i with unit demand

Firms and Consumers

Mass 1 of consumers i with unit demand

Firms and Consumers

Mass 1 of consumers i with unit demand

- mass $1-\alpha \in(0,1)$;
- match value $v_{i k}=v$ for both $k=1,2$.

Firms and Consumers

Value shoppers	Bargain shoppers

Mass 1 of consumers i with unit demand

- mass $\alpha \in(0,1)$;
- match value $v_{i k}$ is drawn i.i.d. from
$v_{i k}=\left\{\begin{array}{l}v+s_{k} \text { with probability } 0.5 ; \\ v-s_{k} \text { with probability } 0.5 .\end{array}\right.$

Limited Attention (depth vs. breadth)

- Consumers randomly assigned to a firm k and learn $\left(p_{k}, s_{k}\right)$.
- Consumers need to learn a firm's price to buy its product.

Limited Attention (depth vs. breadth)

- Consumers randomly assigned to a firm k and learn $\left(p_{k}, s_{k}\right)$.
- Consumers need to learn a firm's price to buy its product.
- Consumers can
- either learn match value $v_{i k}$,
- or learn price p_{-k} of the other product.

Firms

- Firm $k=1,2$ with zero marginal cost chooses price p_{k} and match value design $s_{k} \in[0, \bar{s}]$.
- Firms cannot condition prices on $v_{i k}$.
- A lower s_{k} corresponds to a mass-market design;

Firms

- Firm $k=1,2$ with zero marginal cost chooses price p_{k} and match value design $s_{k} \in[0, \bar{s}]$.
- Firms cannot condition prices on $v_{i k}$.
- A lower s_{k} corresponds to a mass-market design; a higher s_{k} to a niche design.

Firms

- The design affects dispersion of match values (Johnson and Myatt 2006). More dispersion can stand for
- more precise info, e.g. via ads, sales force, website etc.
- product design for niche audiences.
- making taste-based features more salient than quality.

Timeline

Firms choose
s and p.

Timeline

Each consumer randomly assigned to a firm k
 and observe p_{k} and s_{k}.

Firms choose
s and p.

Timeline

Each consumer randomly

assigned to a firm k
Study $v_{i k}$.
Buy product k
and observe p_{k} and s_{k}.
Firms choose
s and p.

Timeline

Timeline

- In generalization: outside option is continue searching

Equilibrium

- Symmetric Perfect Bayesian Equilibrium.
- Equilibrium-selection assumption:
- When bargain shoppers are indifferent between browsing prices and studying match values, some arbitrarily small share browses prices.
- Focus on the case where

$$
\begin{aligned}
& \bar{s}>v \\
& \bar{s} \in\left(v(2-\alpha)\left[\frac{1}{\alpha}-\frac{1}{2} \log \left(\frac{4-\alpha}{2-\alpha}\right)\right], v \frac{(4-3 \alpha)}{\alpha}\right) .
\end{aligned}
$$

Consumer Search Decision

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

- If $s_{1} \geq v$, browse iff p_{1} sufficiently large.

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

- If $s_{1} \geq v$, browse iff p_{1} sufficiently large. \Rightarrow Charge $p_{1} \leq \bar{p}_{1}$.

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

- If $s_{1} \geq v$, browse iff p_{1} sufficiently large. \Rightarrow Charge $p_{1} \leq \bar{p}_{1}$.
- Larger s_{k} encourages studying.

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

- If $s_{1} \geq v$, browse iff p_{1} sufficiently large. \Rightarrow Charge $p_{1} \leq \bar{p}_{1}$.
- Larger s_{k} encourages studying. $\Rightarrow \bar{p}_{1}$ increases in s_{k}.

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

- If $s_{1} \geq v$, browse iff p_{1} sufficiently large. \Rightarrow Charge $p_{1} \leq \bar{p}_{1}$.
- Larger s_{k} encourages studying. $\Rightarrow \bar{p}_{1}$ increases in s_{k}.
- If $G\left(p_{1}\right)>0, \& G(v)>0$, browse if s_{k} sufficiently small.

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

- If $s_{1} \geq v$, browse iff p_{1} sufficiently large. \Rightarrow Charge $p_{1} \leq \bar{p}_{1}$.
- Larger s_{k} encourages studying. $\Rightarrow \bar{p}_{1}$ increases in s_{k}.
- If $G\left(p_{1}\right)>0, \& G(v)>0$, browse if s_{k} sufficiently small.
\Rightarrow Small s_{k} encourages browsing.

Consumers' trade off

- Consumer assigned to firm 1 observing p_{1}, s_{1}, and take a distribution $G\left(p_{2}\right)$ of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v-s_{1}<p_{1}$	$p_{2}<p_{1}$

How do value shoppers use attention?

- If $s_{1} \geq v$, browse iff p_{1} sufficiently large. \Rightarrow Charge $p_{1} \leq \bar{p}_{1}$.
- Larger s_{k} encourages studying. $\Rightarrow \bar{p}_{1}$ increases in s_{k}.
- If $G\left(p_{1}\right)>0, \& G(v)>0$, browse if s_{k} sufficiently small. \Rightarrow Small s_{k} encourages browsing.

Equilibrium

Equilibrium characterization

Equilibrium characterization

- Distraction effect: combine large prices with much dispersion.

Equilibrium characterization

firms choose $s \in\left[0, s_{p}\right)$
value shoppers browse
bargain shoppers browse
\cdots
\cdots

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.

Equilibrium characterization

firms choose $s \in\left[0, s_{p}\right)$
value shoppers browse

bargain shoppers browse \quad| firms choose \bar{s} |
| :---: |
| value shoppers study |

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.
- Value shoppers unlikely to find cheaper product.

Equilibrium characterization

$$
\begin{gathered}
\text { firms choose } s \in\left[0, s_{p}\right) \quad \text { firms choose } \bar{s} \\
\text { value shoppers browse } \\
\text { bargain shoppers browse bargain shoppers browse }
\end{gathered}
$$

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.
- Value shoppers unlikely to find cheaper product.
- Browsers ignore mismatches \Rightarrow raises demand.

Equilibrium characterization

firms choose $s \in\left[0, s_{p}\right) \quad$ firms choose \bar{s} value shoppers browse value shoppers study bargain shoppers browse bargain shoppers browse

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.
- Value shoppers unlikely to find cheaper product.
- Browsers ignore mismatches \Rightarrow raises demand.
- Pricing pattern resembles regular prices and sales.
- Eichenbaum et al. (2011); Nakamura and Steinsson (2008, 2011); Pesendorfer (2002).

Equilibrium characterization

firms choose $s \in\left[0, s_{p}\right) \quad$ firms choose \bar{s} value shoppers browse value shoppers study bargain shoppers browse bargain shoppers browse

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.
- Value shoppers unlikely to find cheaper product.
- Browsers ignore mismatches \Rightarrow raises demand.
- Pricing pattern resembles regular prices and sales.
- Eichenbaum et al. (2011); Nakamura and Steinsson (2008, 2011); Pesendorfer (2002).
- Firms advertise price reductions (Pesendorfer (2002)).

Comparative Statics and Surplus
 Analysis

Comparative statics w.r.t. \bar{s}

- Larger \bar{s} can capture
- More niche designs. (deregulation, innovation, etc)
- More precise product info. (e.g. new ad technology, disclosure requirements, etc)

More-detailed product info raise prices

More-detailed product info raise prices

- A larger \bar{s} raises prices in a FOSD sense.

More-detailed product info raise prices

- A larger \bar{s} raises prices in a FOSD sense.

More-detailed product info raise prices

- A larger \bar{s} raises prices in a FOSD sense.
- Reinforce distraction effect:

More-detailed product info raise prices

- A larger \bar{s} raises prices in a FOSD sense.
- Reinforce distraction effect:
- Distract consumers more effectively from browsing.

More-detailed product info raise prices

- A larger \bar{s} raises prices in a FOSD sense.
- Reinforce distraction effect:
- Distract consumers more effectively from browsing. \Rightarrow raise prices.
- Result: More-precise info reduce competition.
- Consider again an increase in \bar{s}.

More info reduce consumer surplus - Only with Limited Atten-

 tion- Consider again an increase in \bar{s}.
- Fixing prices and search strategies, studying consumers get better matches, raising CS.

More info reduce consumer surplus - Only with Limited Atten-

 tion- Consider again an increase in \bar{s}.
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less

More info reduce consumer surplus - Only with Limited Attention

- Consider again an increase in \bar{s}.
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.

More info reduce consumer surplus - Only with Limited Attention

- Consider again an increase in \bar{s}.
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:

More info reduce consumer surplus - Only with Limited Attention

- Consider again an increase in \bar{s}.
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:
- With full attention, more info do not harm consumers.

More info reduce consumer surplus - Only with Limited Attention

- Consider again an increase in \bar{s}.
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:
- With full attention, more info do not harm consumers.
- Price increases limited by value increase.

More info reduce consumer surplus - Only with Limited Attention

- Consider again an increase in \bar{s}.
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:
- With full attention, more info do not harm consumers.
- Price increases limited by value increase.

Result: Coarser info benefits consumers.

Obfuscated Info

- Do sellers want to make product information easily available?

Obfuscated Info

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.

Obfuscated Info

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
- Obfuscation: need attention to learn match value.

Obfuscated Info

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
- Obfuscation: need attention to learn match value.
- Easily-available info: learn match value w/o using attention.

Obfuscated Info

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
- Obfuscation: need attention to learn match value.
- Easily-available info: learn match value w/o using attention.
- When firms exploit distraction effect in equilibrium, they also obfuscate info.

Obfuscated Info

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
- Obfuscation: need attention to learn match value.
- Easily-available info: learn match value w/o using attention.
- When firms exploit distraction effect in equilibrium, they also obfuscate info.
- Need scarce attention to distract consumers.

Obfuscated Info

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
- Obfuscation: need attention to learn match value.
- Easily-available info: learn match value w/o using attention.
- When firms exploit distraction effect in equilibrium, they also obfuscate info.
- Need scarce attention to distract consumers.

Result: To exploit the distraction effect, firms offer detailed and obfuscated product info.

Discussion

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).

Discussion

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.

Discussion

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.

Discussion

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.

Discussion

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.
- E.g. UK ban on ads for junk food made consumers more price sensitive (Dubois et al (2018)).

Discussion

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.
- E.g. UK ban on ads for junk food made consumers more price sensitive (Dubois et al (2018)).
- Detailed info can backfire:

Discussion

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.
- E.g. UK ban on ads for junk food made consumers more price sensitive (Dubois et al (2018)).
- Detailed info can backfire:
- Exposure to sales force made consumers less price sensitive (Hastings et al. (2017)).

Food Labels

NUTRI-SCORE
Ascid

Food Labels

NUTRI-SCORE

- Food labels encourage product comparison.
- Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
- Cheaper (Barahona et al (2021)).

Food Labels

NUTRI-SCORE A 3 CDE

- Food labels encourage product comparison.
- Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
- Cheaper (Barahona et al (2021)).
- Labels refocus attention.

Food Labels

NUTRI-SCORE

- Food labels encourage product comparison.
- Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
- Cheaper (Barahona et al (2021)).
- Labels refocus attention.
- Stronger effects for labels with coarser info.

Food Labels

NUTRI-SCORE

- Food labels encourage product comparison.
- Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
- Cheaper (Barahona et al (2021)).
- Labels refocus attention.
- Stronger effects for labels with coarser info.
- Consumers focus less on nutrition tables.

Food Labels

NUTRI-SCORE

Ascd:

- Food labels encourage product comparison.
- Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
- Cheaper (Barahona et al (2021)).
- Labels refocus attention.
- Stronger effects for labels with coarser info.
- Consumers focus less on nutrition tables.
- Lobby for labels with more-detailed info.
- Julia et al. (2018a,b)

Extensions

Extensions

- Brand proliferation to distract consumers.
- More firms and search multiple attributes.
- Larger parameter range. details
- Continuous match-value distribution.

Conclusion

- How do firms use design to influence consumer attention?
- Product info (e.g. ads)
- Product design

Conclusion

- How do firms use design to influence consumer attention?
- Product info (e.g. ads)
- Product design
- Distraction effect: dispersed match values distract from comparison shopping.

Conclusion

- How do firms use design to influence consumer attention?
- Product info (e.g. ads)
- Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.

Conclusion

- How do firms use design to influence consumer attention?
- Product info (e.g. ads)
- Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.
- Policy implications:

Conclusion

- How do firms use design to influence consumer attention?
- Product info (e.g. ads)
- Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.
- Policy implications:
- Coarser and easily-available reinforce comparison and benefit consumers.

Conclusion

- How do firms use design to influence consumer attention?
- Product info (e.g. ads)
- Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.
- Policy implications:
- Coarser and easily-available reinforce comparison and benefit consumers.
- More info can harm consumers.

Brand proliferation

- Idea: capture products that come in varieties.

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design $s(>v)$ fix; seller k 's product comes in varieties $R_{k} \in \mathbb{N}$, where $R_{k} \leq \bar{R}$ and $\bar{R} \geq 2$.

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design $s(>v)$ fix; seller k 's product comes in varieties $R_{k} \in \mathbb{N}$, where $R_{k} \leq \bar{R}$ and $\bar{R} \geq 2$.
- Sellers choose \# of varieties R_{k} and price $p_{k r_{k}}$.

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design $s(>v)$ fix; seller k 's product comes in varieties $R_{k} \in \mathbb{N}$, where $R_{k} \leq \bar{R}$ and $\bar{R} \geq 2$.
- Sellers choose \# of varieties R_{k} and price $p_{k r_{k}}$.
- Varieties iid: $v_{i k r_{k}}=\left\{\begin{array}{l}v+s \text { with probability } 0.5 ; \\ v-s \text { with probability } 0.5 .\end{array}\right.$

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design $s(>v)$ fix; seller k 's product comes in varieties $R_{k} \in \mathbb{N}$, where $R_{k} \leq \bar{R}$ and $\bar{R} \geq 2$.
- Sellers choose \# of varieties R_{k} and price $p_{k r_{k}}$.
- Varieties iid: $v_{i k r_{k}}=\left\{\begin{array}{l}v+s \text { with probability } 0.5 \text {; } \\ v-s \text { with probability } 0.5 .\end{array}\right.$
- Initially learn all prices of firm k.

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design $s(>v)$ fix; seller k 's product comes in varieties $R_{k} \in \mathbb{N}$, where $R_{k} \leq \bar{R}$ and $\bar{R} \geq 2$.
- Sellers choose \# of varieties R_{k} and price $p_{k r_{k}}$.
- Varieties iid: $v_{i k r_{k}}=\left\{\begin{array}{l}v+s \text { with probability } 0.5 \text {; } \\ v-s \text { with probability } 0.5 .\end{array}\right.$
- Initially learn all prices of firm k.
- Browse to learn all prices of $-k$.

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design $s(>v)$ fix; seller k 's product comes in varieties $R_{k} \in \mathbb{N}$, where $R_{k} \leq \bar{R}$ and $\bar{R} \geq 2$.
- Sellers choose \# of varieties R_{k} and price $p_{k r_{k}}$.
- Varieties iid: $v_{i k r_{k}}=\left\{\begin{array}{l}v+s \text { with probability } 0.5 ; \\ v-s \text { with probability } 0.5 .\end{array}\right.$
- Initially learn all prices of firm k.
- Browse to learn all prices of $-k$.
- Study to learn match value of $C(\leq \bar{R})$ of k 's products.

Brand proliferation

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design $s(>v)$ fix; seller k 's product comes in varieties $R_{k} \in \mathbb{N}$, where $R_{k} \leq \bar{R}$ and $\bar{R} \geq 2$.
- Sellers choose \# of varieties R_{k} and price $p_{k r_{k}}$.
- Varieties iid: $v_{i k r_{k}}=\left\{\begin{array}{l}v+s \text { with probability } 0.5 \text {; } \\ v-s \text { with probability } 0.5 .\end{array}\right.$
- Initially learn all prices of firm k.
- Browse to learn all prices of $-k$.
- Study to learn match value of $C(\leq \bar{R})$ of k 's products.
- Brand proliferation to congest attention.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.
- Products ex-ante identical for consumers.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.
- Products ex-ante identical for consumers.
- Avoid intra-brand competition.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.
- Products ex-ante identical for consumers.
- Avoid intra-brand competition.
- Browse to find cheaper deal: $v-\min \left\{p_{k}, p_{-k}\right\}$.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.
- Products ex-ante identical for consumers.
- Avoid intra-brand competition.
- Browse to find cheaper deal: $v-\min \left\{p_{k}, p_{-k}\right\}$.
- Study to find good match: $\left(v+s-p_{k}\right)\left(1-0.5^{\min \left\{R_{k}, C\right\}}\right)$.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.
- Products ex-ante identical for consumers.
- Avoid intra-brand competition.
- Browse to find cheaper deal: $v-\min \left\{p_{k}, p_{-k}\right\}$.
- Study to find good match: $\left(v+s-p_{k}\right)\left(1-0.5^{\min \left\{R_{k}, C\right\}}\right)$.
- In equilibrium, combine $R_{k}=C$ with \bar{p} to discourage price comparison.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.
- Products ex-ante identical for consumers.
- Avoid intra-brand competition.
- Browse to find cheaper deal: $v-\min \left\{p_{k}, p_{-k}\right\}$.
- Study to find good match: $\left(v+s-p_{k}\right)\left(1-0.5^{\min \left\{R_{k}, C\right\}}\right)$.
- In equilibrium, combine $R_{k}=C$ with \bar{p} to discourage price comparison.
- Result: Brand proliferation to distract consumers.

Brand proliferation (cont'd)

- There exists an equilibrium where $p_{k r_{k}}=p_{k}$ for all r_{k} of k.
- Products ex-ante identical for consumers.
- Avoid intra-brand competition.
- Browse to find cheaper deal: $v-\min \left\{p_{k}, p_{-k}\right\}$.
- Study to find good match: $\left(v+s-p_{k}\right)\left(1-0.5^{\min \left\{R_{k}, C\right\}}\right)$.
- In equilibrium, combine $R_{k}=C$ with \bar{p} to discourage price comparison.
- Result: Brand proliferation to distract consumers. Congest attention with varieties to distract consumers from price comparison.

Larger parameter range

(a) $\frac{1}{2}$-study equilibrium.

(b) $\lambda>\frac{1}{2}$-study equilibrium.

(c) All-study equilibrium.

Figure 2: Red: Study \& Blue: Browse

Moving beyond 2 firms

- Infinite firms.

Moving beyond 2 firms

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in(0,1)$.

Moving beyond 2 firms

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in(0,1)$.
- Round 1:

Moving beyond 2 firms

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in(0,1)$.
- Round 1:
- Aware of firm k; Study k or browse new firm k^{\prime} to learn $\left(p_{k}^{\prime}, s_{k}^{\prime}\right)$.

Moving beyond 2 firms

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in(0,1)$.
- Round 1:
- Aware of firm k; Study k or browse new firm k^{\prime} to learn $\left(p_{k}^{\prime}, s_{k}^{\prime}\right)$.
- Buy from a firm whose price she learned, not buy, or search another round.

Moving beyond 2 firms

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in(0,1)$.
- Round 1:
- Aware of firm k; Study k or browse new firm k^{\prime} to learn $\left(p_{k}^{\prime}, s_{k}^{\prime}\right)$.
- Buy from a firm whose price she learned, not buy, or search another round.
- Round 2:

Moving beyond 2 firms

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in(0,1)$.
- Round 1:
- Aware of firm k; Study k or browse new firm k^{\prime} to learn $\left(p_{k}^{\prime}, s_{k}^{\prime}\right)$.
- Buy from a firm whose price she learned, not buy, or search another round.
- Round 2:
- Aware of firm; Study $k^{\prime \prime}$ or previously browsed firm, or browse new firm $k^{\prime \prime \prime}$.

Moving beyond 2 firms

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in(0,1)$.
- Round 1:
- Aware of firm k; Study k or browse new firm k^{\prime} to learn $\left(p_{k}^{\prime}, s_{k}^{\prime}\right)$.
- Buy from a firm whose price she learned, not buy, or search another round.
- Round 2:
- Aware of firm; Study $k^{\prime \prime}$ or previously browsed firm, or browse new firm $k^{\prime \prime \prime}$.
- Buy from a firm whose price she learned, not buy, or search another round.

Moving beyond 2 firms

- Continuation payoff

Moving beyond 2 firms

- Continuation payoff
- $V_{\text {value }}$ for value shoppers.

Moving beyond 2 firms

- Continuation payoff
- $V_{\text {value }}$ for value shoppers.
- $V_{\text {bargain }}$ for bargain shoppers.

Moving beyond 2 firms

- Continuation payoff
- $V_{\text {value }}$ for value shoppers.
- $V_{\text {bargain }}$ for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta>0$ where:

Moving beyond 2 firms

- Continuation payoff
- $V_{\text {value }}$ for value shoppers.
- $V_{\text {bargain }}$ for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta>0$ where:
- $V_{\text {value }}=V_{\text {bargain }}=V$.

Moving beyond 2 firms

- Continuation payoff
- $V_{\text {value }}$ for value shoppers.
- $V_{\text {bargain }}$ for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta>0$ where:
- $V_{\text {value }}=V_{\text {bargain }}=V$.
- Same prices and designs as before, but replacing parameter v with $v-\delta V$.

Moving beyond 2 firms

- Continuation payoff
- $V_{\text {value }}$ for value shoppers.
- $V_{\text {bargain }}$ for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta>0$ where:
- $V_{\text {value }}=V_{\text {bargain }}=V$.
- Same prices and designs as before, but replacing parameter v with $v-\delta V$.
- In this equilibrium, consumers who draw a mismatch may search on.

Continuous match value distribution

$$
\begin{align*}
E_{F_{s}}(v)=\mu>0 & \text { for all } s . \\
\frac{\partial F_{s}(v)}{\partial s} \lesseqgtr 0 & \text { if and only if } \quad v \gtreqless \mu . \tag{1}\\
F_{0}(v)=1 & \text { if and only if } v \geq \mu .
\end{align*}
$$

Thus, increasing s inducing a mean preserving spread on the distribution of v.

$$
\begin{gather*}
p\left(1-F_{s}(p)\right) \text { is strictly quasi-concave in } p \text {, and; } \\
p \max _{s}\left(1-F_{s}(p)\right) \text { is strictly quasi-concave in } p . \tag{2}
\end{gather*}
$$

Proportion of studying consumers

Firms' profit and consumers' welfare

Firms' profit:

$$
\frac{\alpha}{4} \bar{p}
$$

Equal-profit condition for $p \leq v$:

$$
\left[\left(\frac{\alpha}{2}+(1-\alpha)\right)(1-G(p))+\frac{\alpha}{2}(G(v)-G(p))\right] p=\frac{\alpha}{4} \bar{p}
$$

Firms' profit and consumers' welfare

Firms' profit:

$$
\frac{\alpha}{4} \bar{p}
$$

Equal-profit condition for $p \leq v$:

$$
\left[\left(\frac{\alpha}{2}+(1-\alpha)\right)(1-G(p))+\frac{\alpha}{2}(G(v)-G(p))\right] p=\frac{\alpha}{4} \bar{p}
$$

$$
\begin{aligned}
1-G(p) & =\frac{\alpha}{4} \frac{\bar{p}+2(1-G(v)) p}{p} \\
1-G(v) & =\frac{\alpha}{2(2-\alpha)} \frac{\bar{p}}{v}
\end{aligned}
$$

$1-G(p)$ increases in the sense of F.O.S.D. in \bar{p}.

Firms' profit and consumers' welfare

Bargain shoppers' welfare:

$$
\int_{\underline{p}}^{v}\left[\int_{\underline{\underline{p}}}^{p^{\prime}}(v-p) g(p) d p+(v-p) g(p)(1-G(p))\right] d p^{\prime}
$$

Value shoppers' welfare:

$$
\begin{aligned}
(1- & G(v)) \int_{\underline{p}}^{v}(v-p) g(p) d p \\
& +\int_{\underline{p}}^{v}\left[\int_{\underline{p}}^{p^{\prime}}(v-p) g(p) d p+(v-p) g(p)(1-G(p))\right] d p^{\prime}
\end{aligned}
$$

A more "general" product/information design technology

- $v_{i k}$ continuously distributed in $[\underline{v}, \bar{v}]$ according to F_{s} where $\underline{v}<0$.

$$
\begin{align*}
E_{F_{s}}(v)=\mu & \text { for all } s . \\
\frac{\partial F_{s}(v)}{\partial s} \lesseqgtr 0 & \text { if and only if } \quad v \gtreqless \mu . \tag{3}\\
F_{0}(v)=1 & \text { if and only if } \quad v=\mu .
\end{align*}
$$

$p\left(1-F_{s}(p)\right)$ is strictly quasi-concave, and; $p \max _{s}\left(1-F_{s}(p)\right)$ is strictly quasi-concave.

Micro-foundation of information disclosure

- Suppose $\tilde{v}_{i k}$ follows $U[0,1]$.
- Consider a truth-or-noise signal which tells consumers whether their match value is bigger or smaller than the mean with probability ξ, and send a completely random signal with probability $1-\xi$.
- Denote $\triangle=E_{F}\left(\left.\tilde{v}_{i k}-\frac{1}{2} \right\rvert\, \tilde{v}_{i k}>\frac{1}{2}\right)$.
- Upon receiving a good signal, the expectation of $\tilde{v}_{i k}$ is:

$$
\xi\left(\frac{1}{2}+\triangle\right)+(1-\xi) \frac{1}{2}=\frac{1}{2}+\xi \triangle
$$

while upon receiving a bad signal, the expectation of $\tilde{v}_{i k}$ is:

$$
\xi\left(\frac{1}{2}-\triangle\right)+(1-\xi) \frac{1}{2}=\frac{1}{2}-\xi \triangle
$$

Equilibrium Proposition

Proposition

In equilibrium, prices are distributed in $[\underline{p}, v] \cup\{\bar{p}\}$ with no gaps and mass points in $[\underline{p}, v]$. Value shoppers study match value for high price \bar{p} and browse for low price $p \in[\underline{p}, v]$; bargain shoppers browse prices with probability 1.

Corollary

In equilibrium, firms mix $(p, s(p))$ where $s(p) \in S_{p}$ where S_{p} follows:

- $S_{p}=\{\bar{s}\}$ for $p=\bar{p}$ that value shoppers study;
- $S_{p}=\left[0, s_{p}\right)$ for $p \in[\underline{p}, v]$ such that value shoppers browse.
where s_{p} is the threshold such that value shoppers are indifferent between studying and browsing.

