Distracted from Comparison: Product Design and Advertisement with Limited Attention

Johannes Johnen¹ Benson Tsz Kin Leung² 12th Sept 2023 Junior Theory Workshop

¹CORE/LIDAM, UCLouvain

²Hong Kong Baptist University

- People ignore readily-available info, suggesting limited attention.
 - Malmendier & Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...

- People ignore readily-available info, suggesting limited attention.
 - Malmendier & Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...
- Context: complex products.

- People ignore readily-available info, suggesting limited attention.
 - Malmendier & Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...
- Context: complex products.
 - Go deeper in or expand the consideration set.
 - Study match values or browse prices.

- People ignore readily-available info, suggesting limited attention.
 - Malmendier & Lee (2011), Kling, et al. (2012), Heiss et al. (2021)...
- Context: complex products.
 - Go deeper in or expand the consideration set.
 - Study match values or browse prices.
- Design influences what consumers pay attention to.
 - Food labels: Dubois et al (2021), Crosetto et al. (2020).
 - Ad bans: Dubois et al. (2018).

• How do firms use designs to refocus consumers' limited attention?

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
 - ...product design focused on niche consumers.

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
 - ...product design focused on niche consumers.
 - ...taste-based features more salient than quality.

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
 - ...product design focused on niche consumers.
 - ...taste-based features more salient than quality.
 - ...more precise info about match values.

- How do firms use designs to refocus consumers' limited attention?
- Design (Johnson and Myatt (2006)) influences dispersion of consumers' match values. More dispersion captures...
 - ...product design focused on niche consumers.
 - ...taste-based features more salient than quality.
 - ...more precise info about match values.
- Limited attention (Heidhues et al. (2021)): tradeoff between depths and breadth of search.

Distraction effect:

Distraction effect:

• Firms combine large prices with more-precise info

Distraction effect:

• Firms combine large prices with more-precise info \Rightarrow consumers focus on match values

Distraction effect:

 Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping

Distraction effect:

 Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping ⇒ less competition.

Distraction effect:

- Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping ⇒ less competition.
- Mixed strategy: high price more info & low price less info.

Distraction effect:

- Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping ⇒ less competition.
- Mixed strategy: high price more info & low price less info.

Distraction effect:

- Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping ⇒ less competition.
- Mixed strategy: high price more info & low price less info.

- More-detailed info relax competition.
 - E.g. exposure to sales force, classic nutrient tables.

Distraction effect:

- Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping ⇒ less competition.
- Mixed strategy: high price more info & low price less info.

- More-detailed info relax competition.
 - E.g. exposure to sales force, classic nutrient tables.
 - ...can even harm consumers.

Distraction effect:

- Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping ⇒ less competition.
- Mixed strategy: high price more info & low price less info.

- More-detailed info relax competition.
 - E.g. exposure to sales force, classic nutrient tables.
 - ...can even harm consumers.
- To distract consumers, firms obfuscate info.

Distraction effect:

- Firms combine large prices with more-precise info ⇒ consumers focus on match values ⇒ less comparison shopping ⇒ less competition.
- Mixed strategy: high price more info & low price less info.

- More-detailed info relax competition.
 - E.g. exposure to sales force, classic nutrient tables.
 - ...can even harm consumers.
- To distract consumers, firms obfuscate info.
- Coarser and easily-available info reinforce comparison shopping and benefit consumers. (e.g. nutriscores, ad bans)

Related Literature

- Consumer search and limited attention
 - Wolinsky(1986), Anderson and Renault(1999), Bar-Isaac et al.(2012),...
 - Anderson and De Palma(2012), Bordalo et al.(2016), Hefti and Liu(2020), Heidhues et al. (2021) ...
 - Spiegler and Eliaz (2011a,b).
 - Here: design impacts what consumers pay attention to.
- Product design
 - Johnson and Myatt(2006), Bar-Isaac et al.(2012),...
 - Here: designs direct consumer attention.
- Obfuscation
 - Carlin(2009), Chioveanu and Zhou(2013), Gu and Wenzel(2014), Piccione and Spiegler(2012)...
 - Here: consumer attention endogenous.
- Information overload
 - Anderson and De Palma(2012), Hefti and Liu(2020),...
 - Here: individual firms deliberately overload consumers.

The Model

Mass 1 of consumers *i* with unit demand

		Mass 1 of
Value shoppers	Bargain shoppers	consumers <i>i</i>
		with unit demand

			Mass 1 of
Value shoppers		Bargain shoppers	consumers <i>i</i>
			with unit demand

- mass $1 \alpha \in (0, 1)$;
- match value $v_{ik} = v$

for both k = 1, 2.

		Mass 1 of
Value shoppers	Bargain shoppers	consumers <i>i</i>
		with unit demand

• mass $\alpha \in (0,1)$;

• match value
$$v_{ik}$$
 is drawn i.i.d. from $v_{ik} = \begin{cases} v + s_k \text{ with probability 0.5;} \\ v - s_k \text{ with probability 0.5.} \end{cases}$

- Consumers randomly assigned to a firm k and learn (p_k, s_k) .
- Consumers need to learn a firm's price to buy its product.

- Consumers randomly assigned to a firm k and learn (p_k, s_k) .
- Consumers need to learn a firm's price to buy its product.
- Consumers can
 - either learn match value vik,
 - or learn price p_{-k} of the other product.

- Firm k = 1, 2 with zero marginal cost chooses price pk and match value design sk ∈ [0, s].
- Firms cannot condition prices on v_{ik}.
- A lower s_k corresponds to a mass-market design;

- Firm k = 1, 2 with zero marginal cost chooses price pk and match value design sk ∈ [0, s].
- Firms cannot condition prices on v_{ik}.
- A lower *s_k* corresponds to a mass-market design; a higher *s_k* to a niche design.

- The **design** affects dispersion of **match values** (Johnson and Myatt 2006). More dispersion can stand for
 - more precise info, e.g. via ads, sales force, website etc.
 - product design for niche audiences.
 - making taste-based features more salient than quality.

Firms choose

s and p.

Each consumer randomly assigned to a firm kand observe p_k and s_k . Firms choose

s and p.

• In generalization: outside option is continue searching

- Symmetric Perfect Bayesian Equilibrium.
- Equilibrium-selection assumption:
 - When bargain shoppers are indifferent between browsing prices and studying match values, some arbitrarily small share browses prices.
- Focus on the case where

$$\overline{s} > v$$

 $\overline{s} \in \left(v(2-\alpha)\left[\frac{1}{lpha} - \frac{1}{2}\log\left(\frac{4-lpha}{2-lpha}
ight)
ight], v\frac{(4-3lpha)}{lpha}
ight).$

Consumer Search Decision

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_2 < p_1$

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_2 < p_1$

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_2 < p_1$

How do value shoppers use attention?

• If $s_1 \ge v$, browse iff p_1 sufficiently large.

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_{2} < p_{1}$

How do value shoppers use attention?

• If $s_1 \ge v$, browse iff p_1 sufficiently large. \Rightarrow Charge $p_1 \le \overline{p}_1$.

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_{2} < p_{1}$

- If $s_1 \ge v$, browse iff p_1 sufficiently large. \Rightarrow Charge $p_1 \le \overline{p}_1$.
- Larger *s_k* encourages studying.

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_{2} < p_{1}$

- If $s_1 \ge v$, browse iff p_1 sufficiently large. \Rightarrow Charge $p_1 \le \overline{p}_1$.
- Larger s_k encourages studying. $\Rightarrow \overline{p}_1$ increases in s_k .

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_2 < p_1$

- If $s_1 \ge v$, browse iff p_1 sufficiently large. \Rightarrow Charge $p_1 \le \overline{p}_1$.
- Larger s_k encourages studying. $\Rightarrow \overline{p}_1$ increases in s_k .
- If $G(p_1) > 0$, & G(v) > 0, browse if s_k sufficiently small.

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_{2} < p_{1}$

- If $s_1 \ge v$, browse iff p_1 sufficiently large. \Rightarrow Charge $p_1 \le \overline{p}_1$.
- Larger s_k encourages studying. $\Rightarrow \overline{p}_1$ increases in s_k .
- If G(p₁) > 0, & G(v) > 0, browse if s_k sufficiently small.
 ⇒ Small s_k encourages browsing.

Consumer assigned to firm 1 observing p₁, s₁, and take a distribution G(p₂) of firm 2.

Study	Browse
To avoid buying	To search for
a mismatch	a cheaper product
$v - s_1 < p_1$	$p_{2} < p_{1}$

- If $s_1 \ge v$, browse iff p_1 sufficiently large. \Rightarrow Charge $p_1 \le \overline{p}_1$.
- Larger s_k encourages studying. $\Rightarrow \overline{p}_1$ increases in s_k .
- If G(p₁) > 0, & G(v) > 0, browse if s_k sufficiently small.
 ⇒ Small s_k encourages browsing.

Equilibrium

• Distraction effect: combine large prices with much dispersion.

firms choose $s \in [0, s_p)$ firms choose \overline{s} value shoppers browse value shoppers study bargain shoppers browse bargain shoppers browse p V \overline{p}

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.

firms choose $s \in [0, s_p)$ firms choose \overline{s} value shoppers browse value shoppers study bargain shoppers browse bargain shoppers browse p V \overline{p}

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.
 - Value shoppers unlikely to find cheaper product.

firms choose $s \in [0, s_p)$ firms choose \overline{s} value shoppers browse value shoppers study bargain shoppers browse bargain shoppers browse

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.
 - Value shoppers unlikely to find cheaper product.
 - Browsers ignore mismatches \Rightarrow raises demand.

firms choose $s \in [0, s_p)$ firms choose \overline{s} value shoppers browse value shoppers study bargain shoppers browse bargain shoppers browse p V \overline{p}

- Distraction effect: combine large prices with much dispersion.
- Encourage browsing for low prices.
 - Value shoppers unlikely to find cheaper product.
 - Browsers ignore mismatches \Rightarrow raises demand.
- Pricing pattern resembles regular prices and sales.
 - Eichenbaum et al. (2011); Nakamura and Steinsson (2008, 2011); Pesendorfer (2002).

firms choose $s \in [0, s_p)$ firms choose \overline{s} value shoppers browse value shoppers study bargain shoppers browse bargain shoppers browse р V

D

- Encourage browsing for low prices.
 - Value shoppers unlikely to find cheaper product.
 - Browsers ignore mismatches \Rightarrow raises demand.
- Pricing pattern resembles regular prices and sales.
 - Eichenbaum et al. (2011); Nakamura and Steinsson (2008, 2011); Pesendorfer (2002).
 - Firms advertise price reductions (Pesendorfer (2002)).

Comparative Statics and Surplus Analysis

- Larger \overline{s} can capture
 - More niche designs. (deregulation, innovation, etc)
 - More precise product info. (e.g. new ad technology, disclosure requirements, etc)

• A larger \overline{s} raises prices in a FOSD sense.

• A larger \overline{s} raises prices in a FOSD sense.

- A larger \overline{s} raises prices in a FOSD sense.
- Reinforce distraction effect:

- A larger \overline{s} raises prices in a FOSD sense.
- Reinforce distraction effect:
 - Distract consumers more effectively from browsing.

- A larger \overline{s} raises prices in a FOSD sense.
- Reinforce distraction effect:
 - Distract consumers more effectively from browsing. \Rightarrow raise prices.
- **Result:** More-precise info reduce competition.

• Consider again an increase in \overline{s} .

- Consider again an increase in \overline{s} .
- Fixing prices and search strategies, studying consumers get better matches, raising CS.

- Consider again an increase in \overline{s} .
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less

- Consider again an increase in \overline{s} .
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.

- Consider again an increase in \overline{s} .
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:

- Consider again an increase in \overline{s} .
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:
 - With full attention, more info do not harm consumers.
More info reduce consumer surplus - Only with Limited Attention

- Consider again an increase in \overline{s} .
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:
 - With full attention, more info do not harm consumers.
 - Price increases limited by value increase.

More info reduce consumer surplus - Only with Limited Attention

- Consider again an increase in \overline{s} .
- Fixing prices and search strategies, studying consumers get better matches, raising CS.
- But consumers browse less \Rightarrow larger prices and lower CS.
- Results from distraction effect:
 - With full attention, more info do not harm consumers.
 - Price increases limited by value increase.

Result: Coarser info benefits consumers.

• Do sellers want to make product information easily available?

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
 - Obfuscation: need attention to learn match value.

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
 - Obfuscation: need attention to learn match value.
 - $\bullet\,$ Easily-available info: learn match value w/o using attention.

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
 - Obfuscation: need attention to learn match value.
 - $\bullet\,$ Easily-available info: learn match value w/o using attention.
- When firms exploit distraction effect in equilibrium, they also obfuscate info.

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
 - Obfuscation: need attention to learn match value.
 - $\bullet\,$ Easily-available info: learn match value w/o using attention.
- When firms exploit distraction effect in equilibrium, they also obfuscate info.
 - Need scarce attention to distract consumers.

- Do sellers want to make product information easily available?
- Extension: obfuscation versus easily-available info.
 - Obfuscation: need attention to learn match value.
 - $\bullet\,$ Easily-available info: learn match value w/o using attention.
- When firms exploit distraction effect in equilibrium, they also obfuscate info.
 - Need scarce attention to distract consumers.

Result: To exploit the distraction effect, firms offer detailed and obfuscated product info.

• Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.
 - E.g. UK ban on ads for junk food made consumers more price sensitive (Dubois et al (2018)).

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.
 - E.g. UK ban on ads for junk food made consumers more price sensitive (Dubois et al (2018)).
- Detailed info can backfire:

- Policymakers often intervene by making more info available. (e.g. Handel and Schwartzstein (2018)).
- Our results help understand which policies encourage competition.
- Coarser and easily-available info reinforce comparison.
- Coarser info encourages comparison shopping.
 - E.g. UK ban on ads for junk food made consumers more price sensitive (Dubois et al (2018)).
- Detailed info can backfire:
 - Exposure to sales force made consumers less price sensitive (Hastings et al. (2017)).

- Food labels encourage product comparison.
 - Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
 - Cheaper (Barahona et al (2021)).

- Food labels encourage product comparison.
 - Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
 - Cheaper (Barahona et al (2021)).
- Labels refocus attention.

- Food labels encourage product comparison.
 - Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
 - Cheaper (Barahona et al (2021)).
- Labels refocus attention.
 - Stronger effects for labels with coarser info.

- Food labels encourage product comparison.
 - Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
 - Cheaper (Barahona et al (2021)).
- Labels refocus attention.
 - Stronger effects for labels with coarser info.
 - Consumers focus less on nutrition tables.

- Food labels encourage product comparison.
 - Healthier (Barahona et al (2021), Crosetto et al (2020), Dubois et al (2021), Kiesel and Villas-Boas (2013)).
 - Cheaper (Barahona et al (2021)).
- Labels refocus attention.
 - Stronger effects for labels with coarser info.
 - Consumers focus less on nutrition tables.
- Lobby for labels with more-detailed info.
 - Julia et al. (2018a,b)

Extensions

- Brand proliferation to distract consumers. details
- More firms and search multiple attributes. details
- Larger parameter range. details
- Continuous match-value distribution.

- How do firms use design to influence consumer attention?
 - Product info (e.g. ads)
 - Product design

- How do firms use design to influence consumer attention?
 - Product info (e.g. ads)
 - Product design
- Distraction effect: dispersed match values distract from comparison shopping.

- How do firms use design to influence consumer attention?
 - Product info (e.g. ads)
 - Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.

- How do firms use design to influence consumer attention?
 - Product info (e.g. ads)
 - Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.
- Policy implications:

- How do firms use design to influence consumer attention?
 - Product info (e.g. ads)
 - Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.
- Policy implications:
 - Coarser and easily-available reinforce comparison and benefit consumers.

- How do firms use design to influence consumer attention?
 - Product info (e.g. ads)
 - Product design
- Distraction effect: dispersed match values distract from comparison shopping.
- Tradeoff between quantity of info and competition.
- Policy implications:
 - Coarser and easily-available reinforce comparison and benefit consumers.
 - More info can harm consumers.

• Idea: capture products that come in varieties.

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design s(>v) fix; seller k's product comes in varieties $R_k \in \mathbb{N}$, where $R_k \leq \overline{R}$ and $\overline{R} \geq 2$.

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design s(>v) fix; seller k's product comes in varieties $R_k \in \mathbb{N}$, where $R_k \leq \overline{R}$ and $\overline{R} \geq 2$.
- Sellers choose # of varieties R_k and price p_{kr_k} .

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design s(>v) fix; seller k's product comes in varieties $R_k \in \mathbb{N}$, where $R_k \leq \overline{R}$ and $\overline{R} \geq 2$.
- Sellers choose # of varieties R_k and price p_{kr_k} .
- Varieties iid: $v_{ikr_k} = \begin{cases} v + s \text{ with probability 0.5;} \\ v s \text{ with probability 0.5.} \end{cases}$
- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design s(>v) fix; seller k's product comes in varieties $R_k \in \mathbb{N}$, where $R_k \leq \overline{R}$ and $\overline{R} \geq 2$.
- Sellers choose # of varieties R_k and price p_{kr_k} .
- Varieties iid: $v_{ikr_k} = \begin{cases} v + s \text{ with probability 0.5;} \\ v s \text{ with probability 0.5.} \end{cases}$
- Initially learn all prices of firm k.

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design s(>v) fix; seller k's product comes in varieties $R_k \in \mathbb{N}$, where $R_k \leq \overline{R}$ and $\overline{R} \geq 2$.
- Sellers choose # of varieties R_k and price p_{kr_k} .
- Varieties iid: $v_{ikr_k} = \begin{cases} v + s \text{ with probability 0.5;} \\ v s \text{ with probability 0.5.} \end{cases}$
- Initially learn all prices of firm k.
 - Browse to learn all prices of -k.

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design s(>v) fix; seller k's product comes in varieties $R_k \in \mathbb{N}$, where $R_k \leq \overline{R}$ and $\overline{R} \geq 2$.
- Sellers choose # of varieties R_k and price p_{kr_k} .
- Varieties iid: $v_{ikr_k} = \begin{cases} v + s \text{ with probability 0.5;} \\ v s \text{ with probability 0.5.} \end{cases}$
- Initially learn all prices of firm k.
 - Browse to learn all prices of -k.
 - Study to learn match value of $C(\leq \overline{R})$ of k's products.

- Idea: capture products that come in varieties.
- Examples: Cereals, chips, colors of cars/phones...
- Key: study to find best match.
- Design s(>v) fix; seller k's product comes in varieties $R_k \in \mathbb{N}$, where $R_k \leq \overline{R}$ and $\overline{R} \geq 2$.
- Sellers choose # of varieties R_k and price p_{kr_k} .
- Varieties iid: $v_{ikr_k} = \begin{cases} v + s \text{ with probability 0.5;} \\ v s \text{ with probability 0.5.} \end{cases}$
- Initially learn all prices of firm k.
 - Browse to learn all prices of -k.
 - Study to learn match value of $C(\leq \overline{R})$ of k's products.
- Brand proliferation to congest attention.

• There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.

- There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.
 - Products ex-ante identical for consumers.

- There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.
 - Products ex-ante identical for consumers.
 - Avoid intra-brand competition.

- There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.
 - Products ex-ante identical for consumers.
 - Avoid intra-brand competition.
- Browse to find cheaper deal: $v \min\{p_k, p_{-k}\}$.

- There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.
 - Products ex-ante identical for consumers.
 - Avoid intra-brand competition.
- Browse to find cheaper deal: $v \min\{p_k, p_{-k}\}$.
- Study to find good match: $(v + s p_k)(1 0.5^{\min\{R_k, C\}})$.

- There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.
 - Products ex-ante identical for consumers.
 - Avoid intra-brand competition.
- Browse to find cheaper deal: $v \min\{p_k, p_{-k}\}$.
- Study to find good match: $(v + s p_k)(1 0.5^{\min\{R_k, C\}})$.
- In equilibrium, combine R_k = C with p
 to discourage price comparison.

- There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.
 - Products ex-ante identical for consumers.
 - Avoid intra-brand competition.
- Browse to find cheaper deal: $v \min\{p_k, p_{-k}\}$.
- Study to find good match: $(v + s p_k)(1 0.5^{\min\{R_k, C\}})$.
- In equilibrium, combine R_k = C with p
 to discourage price comparison.
- Result: Brand proliferation to distract consumers.

- There exists an equilibrium where $p_{kr_k} = p_k$ for all r_k of k.
 - Products ex-ante identical for consumers.
 - Avoid intra-brand competition.
- Browse to find cheaper deal: $v \min\{p_k, p_{-k}\}$.
- Study to find good match: $(v + s p_k)(1 0.5^{\min\{R_k, C\}})$.
- In equilibrium, combine R_k = C with p
 to discourage price comparison.
- **Result:** Brand proliferation to distract consumers. Congest attention with varieties to distract consumers from price comparison.

Back

Larger parameter range

• Infinite firms.

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in (0, 1)$.

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in (0, 1)$.
- Round 1:

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in (0, 1)$.
- Round 1:
 - Aware of firm k; Study k or browse new firm k' to learn (p'_k, s'_k) .

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in (0, 1)$.
- Round 1:
 - Aware of firm k; Study k or browse new firm k' to learn (p'_k, s'_k) .
 - Buy from a firm whose price she learned, not buy, or search another round.

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in (0, 1)$.
- Round 1:
 - Aware of firm k; Study k or browse new firm k' to learn (p'_k, s'_k) .
 - Buy from a firm whose price she learned, not buy, or search another round.
- Round 2:

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in (0, 1)$.
- Round 1:
 - Aware of firm k; Study k or browse new firm k' to learn (p'_k, s'_k) .
 - Buy from a firm whose price she learned, not buy, or search another round.
- Round 2:
 - Aware of firm; Study k'' or previously browsed firm, or browse new firm k'''.

- Infinite firms.
- Consumers can search infinitely many rounds, discounting future rounds with $\delta \in (0, 1)$.
- Round 1:
 - Aware of firm k; Study k or browse new firm k' to learn (p'_k, s'_k) .
 - Buy from a firm whose price she learned, not buy, or search another round.
- Round 2:
 - Aware of firm; Study k'' or previously browsed firm, or browse new firm k'''.
 - Buy from a firm whose price she learned, not buy, or search another round.

• Continuation payoff

- Continuation payoff
 - V_{value} for value shoppers.

• Continuation payoff

- V_{value} for value shoppers.
- V_{bargain} for bargain shoppers.

- Continuation payoff
 - V_{value} for value shoppers.
 - V_{bargain} for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta > 0$ where:

• Continuation payoff

- V_{value} for value shoppers.
- V_{bargain} for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta > 0$ where:

• Continuation payoff

- V_{value} for value shoppers.
- V_{bargain} for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta > 0$ where:

•
$$V_{value} = V_{bargain} = V$$
.

• Same prices and designs as before, but replacing parameter v with $v - \delta V$.

- Continuation payoff
 - V_{value} for value shoppers.
 - V_{bargain} for bargain shoppers.
- There exists an equilibrium for sufficiently small $\delta > 0$ where:
 - $V_{value} = V_{bargain} = V$.
 - Same prices and designs as before, but replacing parameter v with $v \delta V$.
- In this equilibrium, consumers who draw a mismatch may search on.

Back

$$E_{F_s}(v) = \mu > 0 \quad \text{for all } s.$$

$$\frac{\partial F_s(v)}{\partial s} \stackrel{<}{=} 0 \quad \text{if and only if} \quad v \stackrel{\geq}{=} \mu. \tag{1}$$

$$F_0(v) = 1 \quad \text{if and only if} \quad v \ge \mu.$$

Thus, increasing s inducing a mean preserving spread on the distribution of v.

$$p(1 - F_s(p)) \text{ is strictly quasi-concave in } p, \text{ and;}$$

$$p \max(1 - F_s(p)) \text{ is strictly quasi-concave in } p.$$
(2)

Proportion of studying consumers

Firms' profit and consumers' welfare

Firms' profit:

$$\frac{\alpha}{4}\overline{p}$$

Equal-profit condition for $p \leq v$:

$$\left[\left(\frac{\alpha}{2}+(1-\alpha)\right)(1-G(p))+\frac{\alpha}{2}(G(v)-G(p))\right]p=\frac{\alpha}{4}\overline{p}$$

Firms' profit and consumers' welfare

Firms' profit:

$$\frac{\alpha}{4}\overline{p}$$

Equal-profit condition for $p \leq v$:

$$\left[\left(\frac{\alpha}{2}+(1-\alpha)\right)(1-G(p))+\frac{\alpha}{2}(G(v)-G(p))\right]p=\frac{\alpha}{4}\overline{p}$$

$$1 - G(p) = rac{lpha}{4} rac{\overline{p} + 2(1 - G(v))p}{p}$$

 $1 - G(v) = rac{lpha}{2(2 - lpha)} rac{\overline{p}}{v}$

1 - G(p) increases in the sense of F.O.S.D. in \overline{p} .

Bargain shoppers' welfare:

$$\int_{\underline{p}}^{v} \left[\int_{\underline{p}}^{p'} (v-p)g(p) \, dp + (v-p)g(p)(1-G(p))\right] \, dp'$$

Value shoppers' welfare:

$$(1 - G(v)) \int_{\underline{p}}^{v} (v - p)g(p) dp + \int_{\underline{p}}^{v} \left[\int_{\underline{p}}^{p'} (v - p)g(p) dp + (v - p)g(p)(1 - G(p)) \right] dp'$$

Back

A more "general" product/information design technology

• v_{ik} continuously distributed in $[\underline{v}, \overline{v}]$ according to F_s where $\underline{v} < 0$.

$$E_{F_s}(v) = \mu \quad \text{for all } s.$$

$$\frac{\partial F_s(v)}{\partial s} \stackrel{<}{=} 0 \quad \text{if and only if} \quad v \stackrel{\geq}{=} \mu. \tag{3}$$

$$F_0(v) = 1 \quad \text{if and only if} \quad v = \mu.$$

 $p(1 - F_s(p))$ is strictly quasi-concave, and; $p \max_{s}(1 - F_s(p))$ is strictly quasi-concave.

(4)

Micro-foundation of information disclosure

- Suppose \tilde{v}_{ik} follows U[0, 1].
- Consider a truth-or-noise signal which tells consumers whether their match value is bigger or smaller than the mean with probability ξ, and send a completely random signal with probability 1 - ξ.
- Denote $\triangle = E_F(\tilde{v}_{ik} \frac{1}{2}|\tilde{v}_{ik} > \frac{1}{2}).$
- Upon receiving a good signal, the expectation of \tilde{v}_{ik} is:

$$\xi(rac{1}{2}+ riangle)+(1-\xi)rac{1}{2}=rac{1}{2}+\xi riangle$$

while upon receiving a bad signal, the expectation of \tilde{v}_{ik} is:

$$\xi(\frac{1}{2}-\bigtriangleup)+(1-\xi)\frac{1}{2}=\frac{1}{2}-\xi\bigtriangleup$$

Equilibrium Proposition

Proposition

In equilibrium, prices are distributed in $[\underline{p}, v] \cup \{\overline{p}\}$ with no gaps and mass points in $[\underline{p}, v]$. Value shoppers study match value for high price \overline{p} and browse for low price $p \in [\underline{p}, v]$; bargain shoppers browse prices with probability 1.

Corollary

In equilibrium, firms mix (p, s(p)) where $s(p) \in S_p$ where S_p follows:

- $S_p = \{\overline{s}\}$ for $p = \overline{p}$ that value shoppers study;
- $S_p = [0, s_p)$ for $p \in [\underline{p}, v]$ such that value shoppers browse.

where s_p is the threshold such that value shoppers are indifferent between studying and browsing.