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1 Introduction

Bayesian games, where each player observes his own private information and then

all players choose actions simultaneously, have been extensively studied and found

wide applications in many fields of economics. The notion of Bayesian equilibrium

is a fundamental game-theoretic concept for analyzing such games. In many applied

work, Bayesian games with discontinuous payoffs arise naturally. For example, in

auctions or price competitions, players’ payoffs may not be continuous when a tie

occurs. However, many previous works focus on the case of continuous payoffs,1 while

little is known about equilibrium existence results in Bayesian games with payoff

discontinuities.

In a complete information environment, Reny (1999) showed that a better-reply

secure game possesses a pure-strategy Nash equilibrium, and proposed the payoff

security condition which is sufficient for a game to be better-reply secure together

with some other conditions.2 Recently, several authors have generalized the work

of Reny (1999) to an incomplete information setting. Specifically, Carbonell-Nicolau

and McLean (2014) extended the “uniform payoff security” condition of Monteiro

and Page (2007) and the “uniform diagonal security” condition of Prokopovych

and Yannelis (2014) to the setting of Bayesian games, and showed the existence of

behavioral/distributional-strategy equilibria. He and Yannelis (2015) proposed the

“finite payoff security” condition and proved the existence of pure-strategy equilibria.

The purpose of this paper is to provide a new equilibrium existence result for

Bayesian games with discontinuous payoffs. Our result is based on a Bayesian

generalization of the clever condition called “disjoint payoff matching”, which was

introduced by Allison and Lepore (2014) for a normal form game. The advantage

of this condition is that one only needs to check the payoff at each strategy profile

itself. The standard payoff security-type condition forces one to check the payoffs

in the neighborhood of each strategy profile, which is more demanding. Thus, our

condition is relatively straightforward, and the equilibrium existence result can be

easily verified for a large class of Bayesian games. Our result widens the applications

in economics as we can cover situations that previous results in the literature are not

readily applicable. As an illustrative example, we provide an application to an all-pay

auction with general tie-breaking rules.

The rest of the paper is organized as follows. The model and our main results

1See, for example, Milgrom and Weber (1985) and Balder (1988).
2A number of recent papers have generalized the work of Reny (1999) in several directions; see Bagh and Jofre

(2006), Carmona (2009), Bagh (2010), Carbonell-Nicolau and McLean (2013), Prokopovych (2013), Reny (2013)
and Carmona and Podczeck (2014) among others. See also the recent paper of Carmona and Podczeck (2015) for
additional references.

3



are presented in Section 2. Some preparatory results and the proof of the main

theorem are collected in Section 3. An illustrative application to an all-pay auction

with general tie-breaking rules is given in Section 4. Section 5 provides a purification

result. Section 6 concludes the paper.

2 Model

2.1 Bayesian game and behavioral-strategy equi-

librium

We consider a Bayesian game as follows:

G = {ui, Xi, (Ti, Ti), λ}i∈I .

• There is a finite set of players, I = {1, 2, . . . , n}.

• Player i’s action space Xi is a nonempty compact metric space, which is

endowed with the Borel σ-algebra B(Xi). Denote X =
∏

i∈I Xi and B(X) =

⊗i∈IB(Xi); that is, B(X) is the product Borel σ-algebra.

• The measurable space (Ti, Ti) represents the private information space of

player i. Let T =
∏

i∈I Ti and T = ⊗i∈ITi.

• The common prior λ is a probability measure on the measurable space (T, T ).

• For every player i ∈ I, ui : X × T → R+ is a B(X) ⊗ T -measurable function

representing the payoff of player i, which is bounded by some γ > 0.3

As usual, we write t−i for an information profile of all players other than i, and

T−i as the space of all such information profiles. We adopt similar notation for action

profiles, strategy profiles and payoff profiles.

For every player i ∈ I, a pure strategy is a Ti-measurable function from Ti to

Xi. Let Li be the set of all possible pure strategies of player i, and L =
∏

i∈I Li.
A behavioral strategy of player i is a Ti-measurable function from Ti to 4(Xi),

where 4(Xi) denotes the space of all Borel probability measures on Xi under the

topology of weak convergence.4 A pure strategy can be viewed as a special case of a

3Since ui is bounded, we can assume that ui takes values in R+ without loss of generality.
4That is, a behavioral strategy fi is a transition probability from (Ti, Ti) to (Xi,B(Xi)) such that fi(·|ti) is a

probability measure on (Xi,B(Xi)) for all ti ∈ Ti, and fi(B|·) is a Ti-measurable function for every B ∈ B(Xi). If λi
is a probability measure on (Ti, Ti), then λi � fi denotes a probability measure on Ti×Xi such that λi � fi(A×B) =∫
A
fi(B|ti)λi(dti) for any measurable subsets A ⊆ Ti and B ⊆ Xi.
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behavioral strategy by considering it as a Dirac measure for every ti. The set of all

behavioral strategies of player i is denoted by Mi, and M =
∏

i∈IMi.

Given a behavioral strategy profile f = (f1, f2, . . . , fn) ∈M, the expected payoff

of player i is

Ui(f) =

∫
T

∫
X1

. . .

∫
Xn

ui(x1, . . . , xn, t1, . . . , tn)fn(dxn|tn) . . . f1(dx1|t1)λ(dt).

Definition 1. A behavioral-strategy equilibrium is a behavioral strategy profile

f ∗ = (f ∗1 , f
∗
2 , . . . , f

∗
n) ∈ M such that f ∗i maximizes Ui(fi, f

∗
−i) for any fi ∈ Mi and

each player i ∈ I.5

We impose the following assumption on the information structure. Let λi be the

marginal probability of λ on (Ti, Ti) for each i ∈ I. Suppose that (T, T , λ) and

(Ti, Ti, λi) are complete probability measure spaces.

Assumption (Absolue Continuity (AC)). The probability measure λ is absolutely

continuous with respect to ⊗i∈Iλi with the corresponding Radon-Nikodym derivative

ψ : T → R+.

This assumption is widely adopted in the setting of Bayesian games; see, for

example, Milgrom and Weber (1985), Balder (1988), Jackson et al. (2002) and

Carbonell-Nicolau and McLean (2014). Notice that the (AC) assumption is imposed

in Milgrom and Weber (1985) and Balder (1988) even when the payoff function is

continuous in the action variables. If players have independent priors in the sense

that λ = ⊗i∈Iλi, then the (AC) assumption holds trivially.

2.2 Normal form game

Below, we convert a Bayesian game G to an (ex ante) normal form game G0. If one

can show the existence of a Nash equilibrium in the game G0, then this equilibrium

corresponds to a behavioral-strategy equilibrium in the original Bayesian game G.

A normal form game Gd is a collection (Xi, ui)i∈I , where Xi and ui are the action

space and payoff function of player i, respectively. We view a Bayesian game G as

a normal norm game and denote it by G0 = (Mi, Ui)i∈I , where Mi is the set of all

possible behavioral strategies, and Ui is the expected payoff function of player i.

5Milgrom and Weber (1985) considered distributional strategies and Balder (1988) extended their results to
behavioral strategies. As remarked in Milgrom and Weber (1985), every behavioral strategy gives rise to a natural
distributional strategy, and every distributional strategy corresponds to an equivalent class of behavioral strategies
defined as the induced regular conditional probabilities. We consider behavioral strategies in this paper for simplicity,
but all the results can be easily extended to distributional strategies.
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A Nash equilibrium in the game G0 is a strategy profile f ∗ = (f ∗1 , f
∗
2 , . . . , f

∗
n) ∈

M such that f ∗i maximizes Ui(fi, f
∗
−i) for any fi ∈ Mi and each player i ∈ I. Thus,

if f ∗ is a Nash equilibrium in the game G0, then it is also a behavioral-strategy

equilibrium in the original Bayesian game G.

2.3 Main result

Reny (1999) proved that under some regularity conditions, a payoff secure game has

a pure-strategy equilibrium.6 To prove that the mixed extension of a normal form

game is payoff secure, Allison and Lepore (2014) introduced the interesting notion of

“disjoint payoff matching” in games with complete information. Below, we extend

this notion to the setting of Bayesian games, and show that the ex ante game G0 is

payoff secure.

First, we describe the notion of “payoff security”, which is due to Reny (1999).

Definition 2. In a normal form game Gd, player i can secure a payoff α ∈ R at

(xi, x−i) ∈ Xi ×X−i if there is some xi ∈ Xi such that ui(xi, y−i) ≥ α for all y−i in

some open neighborhood of x−i.

The game Gd is called “payoff secure” if for every i ∈ I, (xi, x−i) ∈ Xi ×X−i and

ε > 0, player i can secure a payoff ui(xi, x−i)− ε at (xi, x−i).

Consider the points at which a player’s payoff function is discontinuous in other

players’ strategies. In particular, let Di : Ti ×Xi → T−i ×X−i be defined by

Di(ti, xi) = {(t−i, x−i) ∈ T−i ×X−i : ui(xi, ·, ti, t−i) is discontinuous in x−i}.

Suppose that Di has a B(X) ⊗ T -measurable graph for each i ∈ I. Given a pure

strategy fi of player i, denote Dfi
i (ti) = Di(ti, fi(ti)).

Remark 1. In many applications such as auctions and price competition, the

discontinuity arises due to the action variables, and independently of the state

variables. That is, the correspondence Di does not depend on T in the sense that

if (t, x) ∈ Gr(Di), then (t′, x) ∈ Gr(Di) for any t′ ∈ T . It is usually easy to check that

Di has a measurable graph in such cases.7

Definition 3. A Bayesian game G is said to satisfy the condition of “random disjoint

payoff matching” if for any fi ∈ Li, there exists a sequence of deviations {gki }∞k=1 ⊆ Li
such that the following conditions hold:

6See Prokopovych (2011) for an alternative proof for metric games.
7If A is a correspondence from a space Y to Z, then Gr(A) ⊆ Y × Z denotes the graph of A.
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1. for λ-almost all t = (ti, t−i) ∈ T and all x−i ∈ X−i,

lim inf
k→∞

ui(g
k
i (ti), x−i, ti, t−i) ≥ ui(fi(ti), x−i, ti, t−i);

2. lim supk→∞Di(ti, g
k
i (ti)) = ∅ for any i ∈ I and λi-almost all ti ∈ Ti.

When Ti is a singletons set for any player i ∈ I, the above definition reduces to

be the notion of disjoint payoff matching introduced by Allison and Lepore (2014) in

a complete information environment.

In a Bayesian game G, if the above deviations of a player depend only on the

action variables, but not on the state variables, then it is typically much easier to

check the random disjoint payoff matching condition. In particular, such properties

are satisfied in many applications where the discontinuity arises due to the presence

of the ties. The following lemma provides a sufficient condition which is easy to check.

Lemma 1. For each player i, suppose that there exists a sequence of measurable

function hki : Xi → Xi for k ≥ 1 such that the following conditions hold:

1. for any xi ∈ Xi,

lim inf
k→∞

ui(h
k
i (xi), x−i, ti, t−i) ≥ ui(xi, x−i, ti, t−i)

for λ-almost all t ∈ T and all x−i ∈ X−i;

2. lim supk→∞Di(ti, h
k
i (xi)) = ∅ for any i ∈ I, xi ∈ Xi and λi-almost all ti ∈ Ti.

Then the condition of random disjoint payoff matching is satisfied.

Proof. For any i ∈ I and fi ∈ Li, let gki (ti) = hki (fi(ti)) for each k ≥ 1. Then the

sequence {gki } satisfies the conditions in Defintion 3.

The following theorem is our main result. It shows that the random disjoint payoff

matching condition of a Bayesian game G could guarantee the payoff security of the

game G0.

Theorem 1. Under Assumption (AC), if a Bayesian game G satisfies the random

disjoint payoff matching condition, then the game G0 is payoff secure.

2.4 Existence of behavioral-strategy equilibria

Theorem 1 above shows that the random disjoint payoff matching condition of a

Bayesian game G guarantees the payoff security of the ex ante game G0. Reny (1999)

showed that a payoff secure game has a pure-strategy Nash equilibrium provided
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that the game has a compact action spaces, and each player’s payoff function is

quasiconcave in his own actions and satisfies a certain upper semicontinuity condition.

In particular, the condition of aggregate upper semicontinuity of Dasgupta and Maskin

(1986) suffices for this aim.

Definition 4. A normal form game Gd is said to be “aggregate upper semicontinuous”

if the summation of the utility functions of all players is upper semicontinuous.

This notion can be extended to the setting of Bayesian games: a Bayesian

game G is called aggregate upper semicontinuous if
∑

i∈I ui(·, t) : X → R is upper

semicontinuous for any t ∈ T .

It is easy to see that the aggregate upper semicontinuity of a Bayesian game G

implies the aggregate upper semicontinuity of G0. We provide a proof below for the

sake of completeness (see also Lemma 3 in Carbonell-Nicolau and McLean (2014)).

Lemma 2. Under Assumption (AC), if a Bayesian game G is aggregate upper

semicontinuous, then the game G0 is aggregate upper semicontinuous.

Proof. Recall that ψ : T → R+ is the Radon-Nikodym derivative of the proba-

bility measure λ with respect to the product probability ⊗i∈Iλi. Let φ(x, t) =∑
i∈I ui(x, t)ψ(t). Then φ is jointly measurable and upper semicontinuous in x. Define

a mapping Hu : M→ R as follows: for any f = (f1, . . . , fn) ∈M

Hu(f1, . . . , fn) =

∫
T

∫
X

φ(x, t)f(dx|t)⊗i∈I λi(dt)

=

∫
T

∫
X

∑
i∈I

ui(x, t)ψ(t)f(dx|t)⊗i∈I λi(dt)

=
∑
i∈I

∫
T

∫
X

ui(x, t)f(dx|t)λ(dt)

=
∑
i∈I

Ui(f).

By Lemma 4, Hu is upper semicontinuous. Thus, G0 is aggregate upper semicontin-

uous.

The existence of a behavioral-strategy equilibrium follows as an immediate

corollary.

Corollary 1. Under Assumption (AC), if a Bayesian game G satisfies the random

disjoint payoff matching condition and is aggregate upper semicontinuous, then the

game G0 has a Nash equilibrium, which is a behavioral-strategy equilibrium for G.
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Proof. By Theorem 1, the game G0 is payoff secure. As proved in Lemma 2, G0

is aggregate upper semicontinuous. By Proposition 3.2 and Theorem 3.1 of Reny

(1999), it has a Nash equilibrium, which implies that G has a behavioral-strategy

equilibrium.

Remark 2. By extending the uniform payoff security condition of Monteiro and Page

(2007) and adopting the (AC) assumption, Carbonell-Nicolau and McLean (2014)

proved the existence of behavioral/distributional-strategy equilibria in Bayesian games

with discontinuous payoffs. In particular, they showed that the ex ante game G0

is payoff secure when the Bayesian game G satisfies their uniform payoff security

condition. Our result does not cover the result of Carbonell-Nicolau and McLean

(2014) and vice versa. Notice that our condition only needs to check the payoffs at

each strategy profile itself, but not for those payoffs in the neighborhood of the strategy

profile.

3 Proof of Theorem 1

3.1 Preparatory results

The proof of Theorem 1 is based on a clever argument of Allison and Lepore (2014).

However, our incomplete information framework introduces several subtle difficulties

and necessitates new arguments that are far from trivial. Below, we present some

technical results needed for the proof of Theorem 1.

We consider the topology on the behavioral strategy spaceMi for each player i ∈ I.

Definition 5. A sequence {fki } in Mi is said to weakly converge to some f 0
i ∈ Mi

(fki =⇒ f 0
i ) if for every integrably bounded Carathéodory function8 c : Ti ×Xi → R

lim
k→∞

∫
Ti

∫
Xi

c(ti, xi)f
k
i (dxi|ti)λi(dti) =

∫
Ti

∫
Xi

c(ti, xi)f
0
i (dxi|ti)λi(dti).

The weak topology on Mi is defined as the weakest topology for which the functional

fi →
∫
Ti

∫
Xi
c(ti, xi)fi(dxi|ti)λi(dti) is continuous for every integrably bounded

Carathéodory function c.

LetMi be endowed with the above topology, andM = Πi∈IMi be endowed with

the corresponding product topology. The following lemma shows that each player i

in the game G0 is endowed with a nonempty, convex and compact strategy spaceMi

8The function c is said to be a Carathéodory function if c(·, xi) is Ti-measurable for each xi ∈ Xi and c(ti, ·) is
continuous on Xi for each ti ∈ Ti. In addition, c is called integrably bounded if there exists a λi-integrable function
χ : Ti → R+ such that |c(ti, xi)| ≤ χ(ti) for all (ti, xi) ∈ Ti ×Xi.
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Lemma 3. Mi is a convex and compact subset of a topological vector space.

Proof. See Theorem 2.3 of Balder (1988).

Lemma 4. If a sequence {fki } in Mi weakly converges to some f 0
i ∈ Mi, then for

every integrably bounded measurable function c : Ti×Xi → R such that c(ti, ·) is lower

semicontinuous in xi, we have

lim inf
k→∞

∫
Ti

∫
Xi

c(ti, xi)f
k
i (dxi|ti)λi(dti) ≥

∫
Ti

∫
Xi

c(ti, xi)f
0
i (dxi|ti)λi(dti).

Proof. See Theorem 2.2 in Balder (1988).

In the proof of our Theorem 1, we need to deal with some subtle measurability

issues based on the projection theorem and Aumann’s measurable selection theorem.

These theorems are stated below for the convenience of the reader.

Projection Theorem: Let X be a Polish space and (S,S, µ) a complete finite

measure space. If a set E belongs to S ⊗B(X), then the projection of E on S belongs

to S.

Aumann’s measurable selection theorem: Let X be a Polish space and

(S,S, µ) a complete finite measure space. Suppose that F is a nonempty valued

correspondence from S to X having an S ⊗B(X)-measurable graph. Then F admits

a measurable selection; that is, there is a measurable function f from S to X such

that f(s) ∈ F (s) for µ-almost all s ∈ S.

3.2 Proof

We now proceed with the proof of Theorem 1.

Fix a behavioral strategy profile (f1, . . . , fn) ∈M, a player i ∈ I and ε > 0.

Let Si : Ti → Xi be a correspondence defined by

Si(ti) = {xi ∈ Xi :

∫
T−i

∫
X−i

ui(xi, x−i, ti, t−i)ψ(ti, t−i)f−i(dx−i|t−i)⊗j 6=i λi(dt−i)

≥
∫
T−i

∫
X

ui(xi, x−i, ti, t−i)ψ(ti, t−i)f(dx|ti, t−i)⊗j 6=i λi(dt−i)}.

It is obvious that for each fixed ti, Si(ti) is nonempty. Since ui is jointly measurable,

and f and ψ are measurable, the correspondence Si has a B(Xi)⊗Ti-measurable graph.

By the Aumann measurable selection theorem, Si has a Ti-measurable selection f ′i .
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Therefore, we have∫
T

∫
X−i

ui(f
′
i(ti), x−i, ti, t−i)f−i(dx−i|t−i)λ(dt) ≥

∫
T

∫
X

ui(xi, x−i, ti, t−i)f(dx|t)λ(dt).

By the random disjoint payoff matching condition, there exists a sequence of pure

strategies {gki } ⊆ Li such that for λ-almost all t = (ti, t−i) ∈ T and all x−i ∈ X−i,

lim inf
k→∞

ui(g
k
i (ti), x−i, ti, t−i) ≥ ui(f

′
i(ti), x−i, ti, t−i),

and lim supk→∞Di(ti, g
k
i (ti)) = ∅ for λi-almost all ti ∈ Ti.

Let

Ek
i (ti) = {(t−i, x−i) : ui(g

k
i (ti), x−i, ti, t−i) > ui(f

′
i(ti), x−i, ti, t−i)− ε}.

Since the functions ui, g
k
i and f ′i are measurable, the correspondence Ek

i has a B(X−i)⊗
T -measurable graph. Notice that since λ � f−i is a probability measure on T × X−i
and

λ � f−i
(

lim inf
k→∞

Gr(Ek
i )
)

= 1,

we have that limk→∞ λ � f−i
(
Gr(Ek

i )
)

= 1.

Since lim supk→∞Di(ti, g
k
i (ti)) = ∅ for λi-almost all ti ∈ Ti, it follows that

lim sup
k→∞

λ � f−i
(

Gr(D
gki
i )
)
≤ λ � f−i

(
lim sup
k→∞

Gr(D
gki
i )

)
= 0.

Thus, limk→∞ λ � f−i
(

Gr(Ek
i ) \Gr(D

gki
i )
)

= 1. As a result, there exists some positive

integer K > 0 such that for any k ≥ K,

λ � f−i
(

Gr(Ek
i ) \Gr(D

gki
i )
)
> 1− ε.

Let gi = gKi and F = Gr(EK
i ) \Gr(D

gKi
i ). Then we have∫

F

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))

≥
∫
F

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− ε,

which implies that∫
T×X−i

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))
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=

∫
F

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))

+

∫
F c

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))

≥
∫
F

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− ε

+

∫
F c

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− γ · ε

=

∫
T×X−i

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− (γ + 1)ε.

Since X−i is a compact metric space, it is second countable (see Royden and

Fitzpatrick (2010, Proposition 25, p.204)). Thus, we can find a countable base

{Vm}m≥1 for X−i. Let

hmi (x−i, t) =

infx′−i∈Vm ui(gi(ti), x
′
−i, ti, t−i), if x−i ∈ Vm;

−2γ, otherwise.

It is easy to see that hmi (·, t) is lower semicontinuous on X−i for each fixed t ∈ T and

m ≥ 1. It can be easily checked that hmi is a jointly measurable function. Indeed, it

suffices to show that for any c ≥ 0, the set {(x−i, t) ∈ X−i × T : hmi (x−i, t) < c} is

B(X−i) ⊗ T -measurable. Since ui is jointly measurable and gi is Ti-measurable, the

set

{(x−i, t) ∈ Vm × T : ui(gi(ti), x−i, ti, t−i) < c}

is B(X−i) ⊗ T -measurable. By the Projection Theorem, the projection of the above

set on T , denoted as Tm, is a T -measurable subset. Notice that

{(x−i, t) ∈ X−i × T : hmi (x−i, t) < c} = (Vm × Tm) ∪ (V c
m × T ), 9

which is B(X−i)⊗ T -measurable. Thus, hmi is a jointly measurable function.

Let ui(x−i, t) = supm≥1 h
m
i (x−i, t). For each fixed t ∈ T , as in the proof of

Reny (1999, Theorem 3.1), ui(·, t) is the pointwise supremum of a sequence of lower

semicontinuous function, which is also lower semicontinuous on X−i. In addition,

ui is the supremum of a sequence of B(X−i) ⊗ T -measurable functions, which is

also B(X−i) ⊗ T -measurable. Define a function H l
i :
∏

j 6=iMj → R as follows: for

g−i = (g1, . . . , gi−1, gi+1, . . . , gn),

H l
i(g−i) =

∫
T

∫
X−i

ui(x−i, t)ψ(t)g−i(x−i|t−i)⊗i∈I λi(dt).

9For any subset E, Ec denotes the complement of the set E.
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By Lemma 4, H l
i is lower semicontinuous. Thus, there is an open neighborhood

N−i(f−i) ⊆
∏

j 6=iMj of f−i such that for any g−i ∈ N−i(f−i),∫
T

∫
X−i

ui(x−i, t)ψ(t)g−i(x−i|t−i)⊗i∈I λi(dt)

−
∫
T

∫
X−i

ui(x−i, t)ψ(t)f−i(x−i|t−i)⊗i∈I λi(dt)− ε.

That is, ∫
T

∫
X−i

ui(x−i, t)g−i(dx−i|t−i)λ(dt)

≥
∫
T

∫
X−i

ui(x−i, t)f−i(x−i|t−i)λ(dt)− ε.

Recall that F = Gr(EK
i ) \ Gr(D

gKi
i ). Since ui(t, gi(ti), ·) is continuous on the t-

section {x−i ∈ X−i : (x−i, t) ∈ F} of F , we have ui(x−i, t) = ui(gi(ti), x−i, t) for any

(x−i, t) ∈ F . As a result,∫
T

∫
X−i

ui(x−i, t)f−i(dx−i|t−i)λ(dt)

=

∫
F

ui(x−i, t)λ � f−i(d(t, x−i)) +

∫
F c

ui(x−i, t)λ � f−i(d(t, x−i))

≥
∫
F

ui(gi(ti), x−i, t)λ � f−i(d(t, x−i))

>

∫
F

ui(gi(ti), x−i, t)λ � f−i(d(t, x−i)) +

∫
F c

ui(gi(ti), x−i, t)λ � f−i(d(t, x−i))− γ · ε

=

∫
T

∫
X−i

ui(gi(ti), x−i, t)f−i(dx−i|t−i)λ(dt)− γ · ε.

Therefore, for any g−i ∈ N−i(f−i), we have∫
T

∫
X−i

ui(gi(ti), x−i, t)g−i(dx−i|t−i)λ(dt)

≥
∫
T

∫
X−i

ui(x−i, t)g−i(dx−i|t−i)λ(dt)

≥
∫
T

∫
X−i

ui(x−i, t)f−i(x−i|t−i)λ(dt)− ε

≥
∫
T

∫
X−i

ui(gi(ti), x−i, t)f−i(dx−i|t−i)λ(dt)− (γ + 1) · ε

≥
∫
T

∫
X−i

ui(f
′
i(ti), x−i, t)f−i(dx−i|t−i)λ(dt)− 2(γ + 1) · ε

13



≥
∫
T

∫
X

ui(xi, x−i, t)f(dx|t)λ(dt)− 2(γ + 1) · ε,

and consequently, the game G0 is payoff secure.

4 An Application

Below, we provide an example of an all-pay auction with general tie-breaking rules to

demonstrate the usefulness of our result.10

All-pay auction with general tie-breaking rules
Suppose that N bidders compete for an object. Each bidder’s valuation of the

object is given by a measurable function v : Πi∈ITi → [0, 1], where Ti is the state space,

i = 1, . . . , N . The common prior is λ, and λ is absolutely continuous with respect to

⊗i∈Iλi. Bidder i observes his own state ti and submits a bid xi ∈ Xi = [0, 1]. The

bidder who submits the highest bid wins the object and all bidders need to pay their

bids. If multiple bidders submit the highest bid simultaneously, then the tie is broken

as follows:

ui(x1, . . . , xN , t1, . . . , tN) =−xi, xi < maxj∈I xj,

ξi(x1,...,xN )∑
k∈I:xk=maxj∈I xj

ξk(x1,...,xN )
· v(t1, . . . , tN)− xi, xi = maxj∈I xj;

where ξ = (ξ1, . . . , ξN) : [0, 1]N → (0, 1]N is a continuous function which assesses the

relative importance of each bidder’s position when breaking the tie. In particular, if

ξi ≡ 1 for any i, then the tie is broken via the equal probability rule. However, this is

not necessary.

Proposition 1. An all-pay auction with general tie-breaking rules satisfies the random

disjoint payoff matching condition.

10Jackson et al. (2002) showed the existence of a distributional-strategy equilibrium for discontinuous games
with incomplete information by proposing a solution concept where the payoff is “endogenously defined” at the
discontinuities. Araujo, De Castro and Moreira (2008) first considered non-monotonic functions in auctions and
showed that an all-pay auction tie-breaking rule is sufficient for the existence of pure-strategy equilibrium for a class
of auctions. Carbonell-Nicolau and McLean (2014) considered an all-pay auction with the standard tie-breaking rule
that the winning players share the object with equal probability. For other variations, see, for example, Klose and
Kovenock (2015) for an all-pay auction with identity-dependent externalities. The results of this section are not
covered by any of the above papers.
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Proof. Given any bidder i and fi ∈ Li, let

gki (ti) =

min{fi(ti) + 1
k
, 1}, fi(ti) < 1;

1
k
, fi(ti) = 1.

It is obvious that gki ∈ Li for any k ≥ 1.

Fix any t ∈ T and x−i ∈ X−i. If fi(ti) = 1, then ui(fi(ti), x−i, ti, t−i) ≤ 0 and

lim infk→∞ ui(g
k
i (ti), x−i, ti, t−i) ≥ 0. If fi(ti) < 1, we need to consider three possible

cases.

1. If bidder i is the unique winner, then he is still the unique winner by adopting the

strategy gki (ti) since gki (ti) > fi(ti). Since gki (ti) → fi(ti) and ξ is a continuous

function, we have limk→∞ ui(g
k
i (ti), x−i, ti, t−i) = ui(fi(ti), x−i, ti, t−i).

2. If bidder i is one of the multiple winners, then he becomes the unique winner

by adopting the strategy gki (ti). Then

lim
k→∞

ui(g
k
i (ti), x−i, ti, t−i) = vi(ti, t−i)− fi(ti) ≥ ui(fi(ti), x−i, ti, t−i).

3. If bidder i does not get the object, then he still loses the game by adopting

gki (ti) for sufficiently large k. As a result, limk→∞ ui(g
k
i (ti), x−i, ti, t−i) =

ui(fi(ti), x−i, ti, t−i).

Thus, we have

lim inf
k→∞

ui(g
k
i (ti), x−i, ti, t−i) ≥ ui(fi(ti), x−i, ti, t−i),

which implies that condition (1) of Definition 3 is satisfied. In addition, for all ti ∈
Ti, Di(ti, g

k
i (ti)) =

{
[0, gki (ti)]

N−1 \ [0, gki (ti))
N−1} × T−i. Since gki (ti) 6= gk

′
i (ti) for

sufficiently large k and k′, we have

lim sup
k→∞

Di(ti, g
k
i (ti)) = ∅

for any ti ∈ Ti. Thus, condition (2) of Definition 3 also holds.

Therefore, an all-pay auction with general tie-breaking rules satisfies the random

disjoint payoff matching condition.

Since
∑

i∈I ui(t, x) = v(t)−
∑

i∈I xi, the aggregate upper semicontinuity condition

is satisfied. Thus, the existence of a behavioral-strategy equilibrium follows immedi-

ately by combining Corollary 1 and Proposition 1.
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Corollary 2. A behavioral-strategy equilibrium exists in an all-pay auction with

general tie-breaking rules.

Remark 3. Allison and Lepore (2014) presented a Bertrand-Edgeworth oligopoly

model which has general specifications of costs, residual demand rationing, and tie-

breaking rules. They showed that this price competition problem satisfies the disjoint

payoff matching condition and a mixed-strategy equilibrium exists. One can easily

extend their model to an incomplete information environment and formulate the

problem as a Bayesian game. Then by referring to our Theorem 1 and Corollary 1, one

can prove the existence of a behavioral-strategy equilibrium. For further applications

on Bayesian games with discontinuous payoffs including the war of attrition, Cournot

competition and rent seeking, see Carbonell-Nicolau and McLean (2014).

5 Purification

By adopting the “random disjoint payoff matching” condition and the “relative

diffuseness” condition in He and Sun (2014), we will present a purification result

for behavioral-strategy equilibrium in Bayesian games with private values and

independent priors, and hence obtain the existence of pure-strategy equilibrium for

such games.

For each i ∈ I, let (Ti, Ti, λi) be the private information space, and Fi ⊆ Ti be the

smallest σ-algebra relative to which ui is measurable. The σ-algebras Ti and Fi will

represent the diffuseness of information from the aspect of strategies and from the

aspect of payoffs, respectively. The probability spaces (Ti, Ti, λi) and (Ti,Fi, λi) will

be used to model the information space and the payoff-relevant information space.

For any non-negligible subset D ∈ Ti, the restricted probability space (D,FDi , λDi )

is defined as follows: FDi is the σ-algebra {D ∩D′ : D′ ∈ Fi} and λDi the probability

measure re-scaled from the restriction of λi to FDi . Furthermore, (D, T Di , λDi ) can be

defined similarly.

Definition 6. Following the notations above, Fi is said to be setwise coarser than

Ti if for every D ∈ Ti with λi(D) > 0, there exists a Ti-measurable subset D0 of D

such that λi(D04D1) > 0 for any D1 ∈ FDi .

The following assumption due to He and Sun (2014) states that on any non-

negligible subset D ⊆ Ti, T Di is always larger than FDi . That is, the strategy-relevant

diffuseness of information is essentially richer than the payoff-relevant diffuseness of

information.

Assumption (RD). For each i ∈ I, (Ti, Ti, λi) is atomless and Fi is setwise coarser

than Ti.
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Given a behavioral strategy profile f = (f1, . . . , fn) ∈ M, a purification is a pure

strategy profile g = (g1, . . . , g) ∈ L such that the expected payoff Ui(g) = Ui(f) for

each player i ∈ I. Below, we show the existence of a purification for any behavioral-

strategy equilibrium.

Corollary 3. Suppose that

1. Assumption (RD) holds, ui is measurable with respect to Fi for each i ∈ I, and

λ = ⊗i∈Iλi;

2. every player has private values in the sense that ui is a measurable function

from X × Ti to R+;

3. the Bayesian game satisfies the random disjoint payoff matching condition, and

is aggregate upper semicontinuous.

Then there exists a purification for any behavioral-strategy equilibrium, and hence a

pure-strategy equilibrium exists.

Proof. By Corollary 1, there exists a behavioral-strategy equilibrium f . Then due

to Theorem 2 of He and Sun (2014), f has a purification g, which is a pure-strategy

equilibrium.

Remark 4. By adopting the “relative diffuseness” condition of He and Sun (2014) and

the “uniform payoff security” condition of Carbonell-Nicolau and McLean (2014), He

and Yannelis (2015) presented a purification result for behavioral-strategy equilibrium

in Bayesian games with discontinuous payoffs. As discussed in Remark 2 above, our

result here has the advantage that we only need to check the payoffs at each strategy

profile itself, but not for those payoffs in the neighborhood of each strategy profile.

Remark 5. It was pointed out in He and Yannelis (2015), an existence result of a

mixed-strategy equilibrium in a normal form game can be understood as an existence

result of a pure-strategy equilibrium in a Bayesian game with state-irrelevant payoffs.

In particular, suppose that each player can only observe his own private signal from the

unit interval [0, 1], which is endowed with the uniform distribution η. Let T = [0, 1]n

be the state space. The payoff of each player only depends on the action profile, but

not on the state profile. Then the normal form game is reformulated as a Bayesian

game with state-irrelevant payoffs. The mixed strategy mi of player i in the normal

form game can be realized by his private signal (like a randomization device) to be a

pure strategy fi in the sense that mi = η◦f−1i . It is easy to check that f = (f1, . . . , fn)

is a pure-strategy equilibrium in this Bayesian game.
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If we view a normal form game as a Bayesian game, then Fi = {∅, [0, 1]} for each

player i ∈ I, since players’ payoffs do not depend on the states, and Ti is the Borel σ-

algebra on [0, 1]. Thus, Assumption (RD) trivially holds, and our Corollary 3 extends

Allison and Lepore (2014) by allowing for state-dependent payoffs.

6 Concluding Remarks

The purpose of this paper was to prove a new theorem on the existence of behavioral-

strategy equilibria for Bayesian games with discontinuous payoffs. Our result is

different from the recent ones in Carbonell-Nicolau and McLean (2014) and He and

Yannelis (2015). We applied our equilibrium existence theorem to an all-pay auction

with general tie-breaking rules, and also indicated further applications to oligopoly

theory. It remains an open question whether the existence result of this paper can be

extended to a setting of a continuum of players. Such an extension will further widen

the economic applications.
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